

EPFL

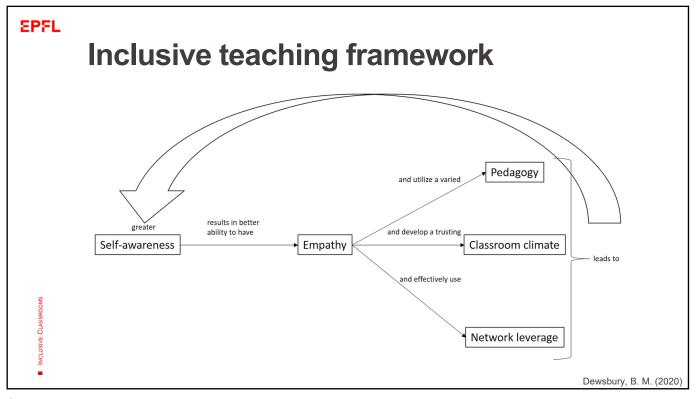
Learning objectives

- Reflect on the importance of self-awareness as an important component of inclusive teaching
- Increase awareness of human tendencies and develop strategies to moderate their impact
- Construct arguments to support inclusivity in classrooms using evidence from literature
- Develop strategies inclusivity in lessons using universal design for learning

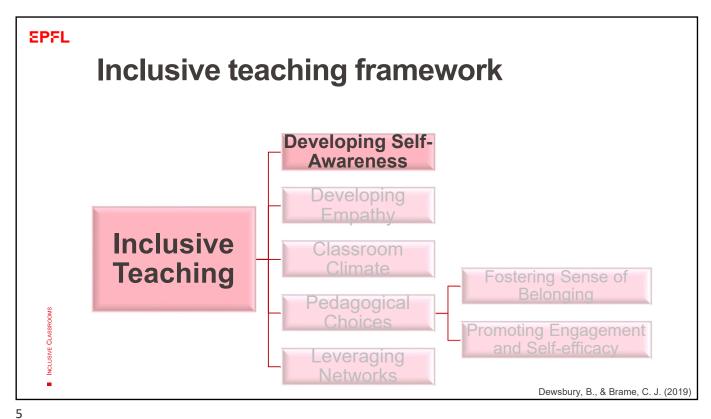
2

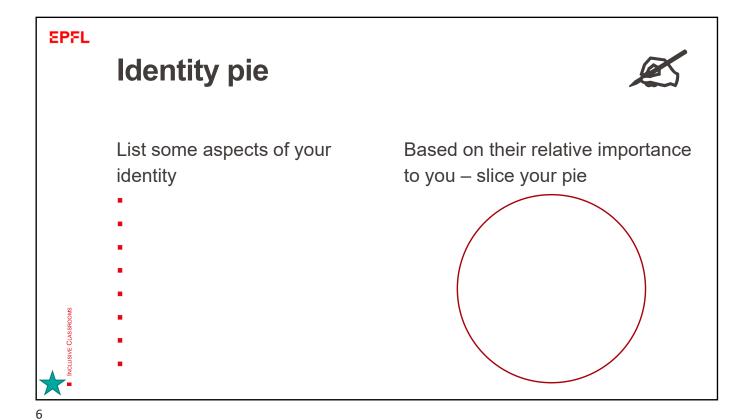
EPFL

Inclusion and Inclusivity


 Inclusion: The degree to which, the classroom physical environment and the interactions that occur as a function of the course produce, is welcoming and provides opportunities for success for all identities.

Inclusivity: The practice of including people across differences.
 Inclusivity implies an <u>intentional practice</u> of recognizing and working to mitigate biases that lead to marginalization or exclusion of some people.


INCLUSIVE CLASS


Dewsbury, B., & Brame, C. J. (2019)

3

4

EPFL

Unpacking microaggressions

Commonplace daily verbal, behavioural or environmental slights, whether intentional or unintentional, that communicate hostile, derogatory, or negative attitudes toward stigmatized or culturally marginalized groups

discrimination
minority oppressive acts people of color slights unintentional snubs POC disabled racism demeaning unintentional snubs POC disabled racism demeaning demeaning demeaning stressful stressful demeaning intentional suggression stressful to the political violence of cultural appropriation dismissals intentional suggression stressful to the political violence but the propriet and the propriet acts of the propriet acts o

It's the impact that matters – not the intent

Image credit: Simmons University Institute for Inclusive Leadership

https://en.wikipedia.org/

•

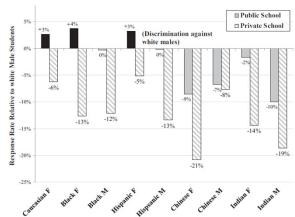
EPFL

Implicit bias

- Implicit bias is a form of bias that occurs automatically and unintentionally, that nevertheless affects judgments, decisions, and behaviours.
- Some implicit biases:
 - Gender Career: family and females & career and males
 - · Gender Science: liberal arts and females & science and males
 - Sexuality: preference for straight relative to gay people
 - · Age: preference for young over old
 - · Weight: preference for thin people relative to fat people
 - Skin-tone: preference for light-skin relative to dark-skin

U. S. National Institute of Health; Project Implicit

ACHISIVE CLASSROOM


8

EPFL

How micro discriminations add up to big differences

 When considering requests from prospective students seeking mentoring in the future, faculty were significantly more responsive to White males than to all other categories of students, collectively, particularly in higher-paying disciplines and private institutions

Has implications for future pay gaps

over 6,500 professors at top U.S. universities drawn from 89 disciplines and 259 institutions

Milkman, et.al., (2015). What happens before? A field experiment exploring how pay and representation differentially shape bias on the pathway into organizations. *Journal of Applied Psychology*, 100(6), 1678–1712. https://doi.org/10.1037/apl0000022

9

EPFL

Milkman, et.al., (2012). Temporal Distance and Discrimination: An Audit Study in Academia. Psychological Science, 23(7), 710–717. https://doi.org/10.1177/0956797611434539

10

EPFL

Goldin, C., & Rouse, C. (2000). Orchestrating Impartiality: The Impact of "Blind" Auditions on Female Musicians. *American Economic Review*, 90(4), 715–741. https://doi.org/10.1257/aer.90.4.715

11

EPFL

How can we reduce unintentional bias?

Thinking back to the 3 stories I have told, what are 1-2 common features of the conditions which reduced bias?

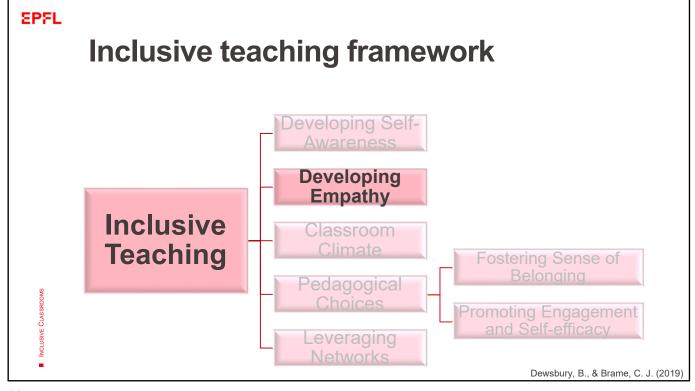
- Pain medication
- Auditioning for the orchestra
- Meeting a student

NCLUSIVE CLASSROOMS

12

EPFL

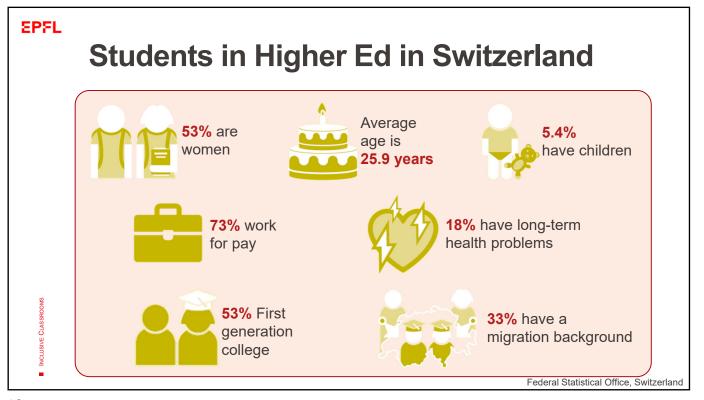
How can we reduce unintentional bias?


Think of teaching a session where you ask students a lot of questions and they ask you a lot of questions.

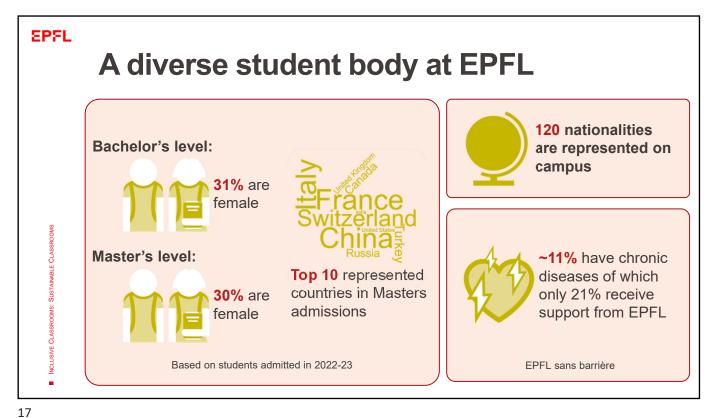
Where could unintentional bias manifest?

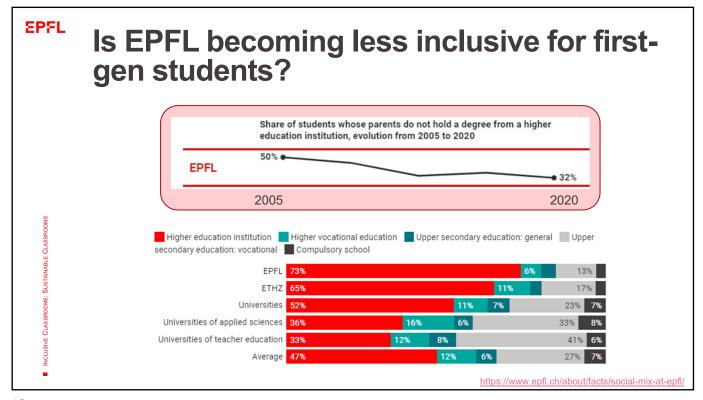
How could you mitigate the impact of bias?

C L


13

14




15

16

22.02.2024 **Inclusive Classrooms**

18

EPFL

A work in progress

Expanding, recognizing and understanding diversity at EPFL

 Recognizing the breadth of diversity and the needs of different groups

Equal Opportunity & Diversity Action Plan

2021-2024

 $https://www.epfl.ch/about/equality/wp-content/uploads/2022/02/2022_EPFL_EO_ACTION_PLAN_EN_web.pdf$

19

EPFL

How would you respond?

It is the end of the semester and a student writes to you to ask you if they could take the exam later because they have to go for their father's funeral.

You remember that earlier in the semester this same student had requested an extension on an assignment because their father died.

What do you do?

LUSIVE CLASSROOMS

20

EPFL

We make assumptions too

- What are some assumptions you might make about your students?
- Round Robbin

WARNING
ASSUMPTIONS
A H E A D

Sov C Bytain Onl

21

What are the assumptions... ...what could you say instead?

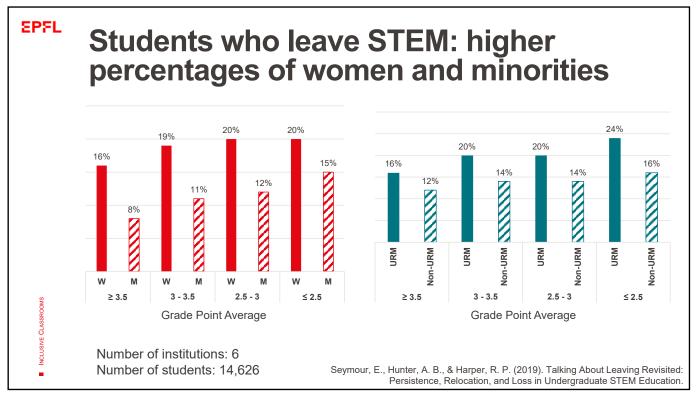
When your parents were in college, the chemistry they learnt...

When I was in college, the chemistry I learnt...

When you go skiing for a holiday....

When you go for a holiday...

If your wife or husband has cancer one day...


If your loved one has cancer one day...

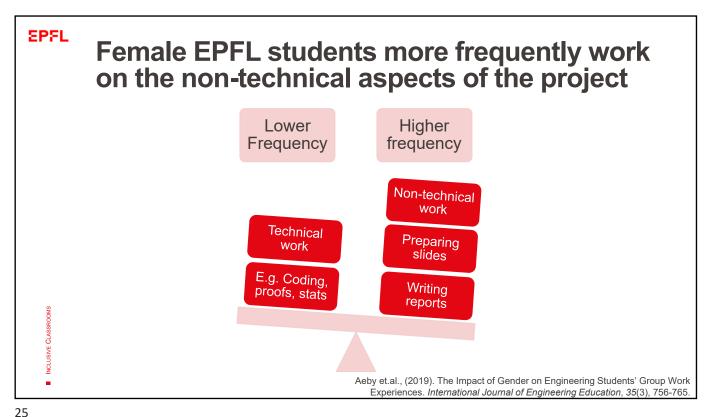
When a physicist sets up an experiment, he...

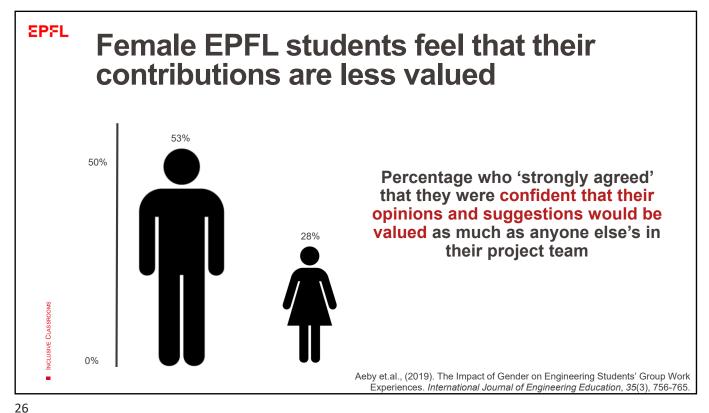
When a physicist sets up an experiment, they...

Adapted from: Tanner, K., & Allen, D. (2007)

22

23


24


Class A - Survey 3 Males are over-nominated by **EPFL** peers as mastering subject matter 3.5 Female All three classes consisted of a numerical Number of nominations Male female majority; (56%, 55.4%, and 58.4% Outspoken female) Males averaged 1.31 nominations, while Class B - Survey 4 females averaged 1.12 nominations Females did not show a bias toward nominating males. Males, on the other hand, showed a significant bias towards males. (after controlling for performance 3.6 3.9 and outspokenness) Class C - Survey 5 13 Grunspan, et.al., (2016). Males Under-Estimate Academic Performance

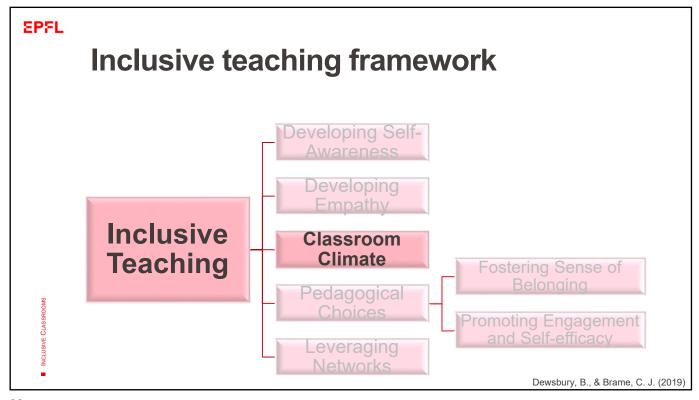
Joelyn de Lima 12

of Their Female Peers in Undergraduate Biology Classrooms. *PLOS ONE*, *11*(2), e0148405. https://doi.org/10.1371/journal.pone.0148405

22.02.2024 **Inclusive Classrooms**

EPFL

Students make assumptions too!



As a student, what are some assumptions you made about your teachers?

• What are some assumptions your students could make about you?

Think about various aspects of diversity – real or perceived.

27

28

EPFL

We bring ourselves into the classroom

Teachers:

- our identities,
- assumptions and biases,
- cultural values.
- prior experiences,
- preferred teaching approaches,
- personalities,
- expertise in our specializations.

Students:

- Their identities
- assumptions and biases,
- cultural values.
- prior experiences,
- •

29

EPFL

Our EPFL classrooms are not inclusive

- One-third of the female student respondents report having been victim of unwanted physical contact, 14% report being the victim of a sexual assault and 2.8% report being victim of a rape during their work or studies
- For students who signalled being a target of inappropriate remarks,
 79.4% of these remarks took place in a classroom.
- Classrooms were the second most common location where sexual harassment and violence was witnessed.

CLUSIVE CLASSROOMS

The EPFL Culture of Respect Survey (2021)

30

EPFL

Students cause chilly classroom climates

- Making disparaging remarks, interrupting when a female student is speaking
- Showing condescending facial expressions in response to questions from female students
- Data from several studies found that 70–90% of women reported at least one incident in which a male student created a negative situation for them in class

INCLUSIVE CLASSRO

Wenzel & College, (2002).

31

EPFL

Teachers cause chilly classroom climates with verbal and non-verbal behaviours

- Calling more on the male students
- Posing easier questions to women and more difficult or thoughtful ones to men
- Males were often asked more follow-up questions or had more responses than females.
- Responses from males were praised for their intellectual content more often than those from women
- Women were on the receiving end of chillier body language (turning away, failing to make eye contact, or other signs of inattentiveness, such as looking at a watch)

SIVE CLASSROOMS

In one study, 76% of the women, but less than half of the men, reported feelings of fear, humiliation, or intimidation in courses taught by males

Wenzel & College, (2002)

32

How hard do you have to work to get good grades?

It was mid semester when we had our first exam for that course. The moment I got it back, I had to realise that my grade was drastically lower than the one of a friend who had the exact same answers. I went to the teacher, asking why my grade was so significantly lower. He answered: "You are a girl, and girls in engineering simply have to work harder than boys to achieve the same grade."

EPFL Polyquity

33

EPFL

Words matter...

I don't know why you do not like Calculus. It really isn't that hard.

Okay, this next type of calculation is very straightforward so you shouldn't have any problems.

I got an A in that class, and I did not have to study at all

You don't need to understand it, you just have to plug and chug.

Thanks to Dr. Cori Fata-Hartley, MSU College of Nat Sci, MSU

34

EPFL

A warm classroom climate

- Increases sense of belonging
 - · Increases motivation, self-efficacy, and academic achievement

NCLUSIVE CLASSF

Freeman, et. al., (2007); Zumbrunn, et.al., (2014)

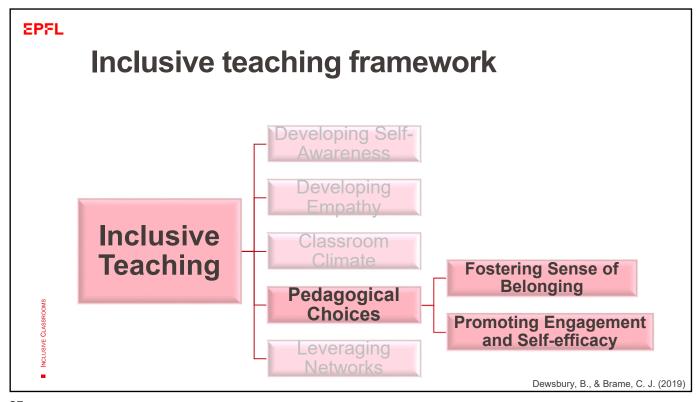
35

EPFL

The power of a "growth mindset"

150 STEM professors and more than 15,000 students

In classes taught by fixed mindset faculty:


- Achievement gaps were twice as large
- Students were demotivated and had more negative experiences in classes

■ White/Asian **■** URM 3.00 STEM course grade 2.80 2.70 2.60 2.50 Fixed Growth 3.3 3.2 How much did your instructor motivate you to do your best work? How much did the instructor emphasize learning & development? How likely would you be to recommend this course with this instructor? course require?

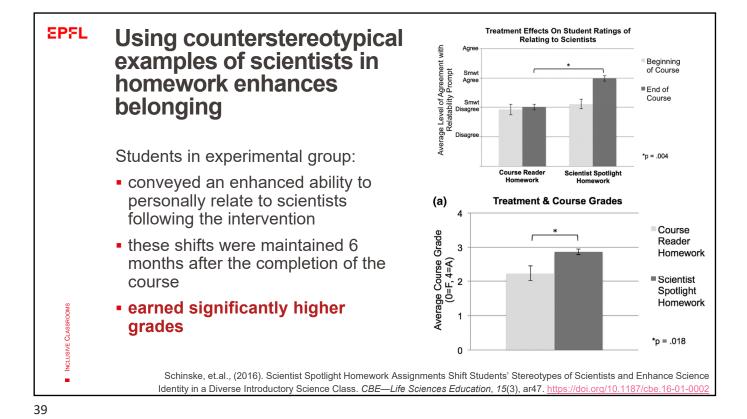
3.10

Canning, et.al.,(2019). STEM faculty who believe ability is fixed have larger racial achievement gaps and inspire less student motivation in their classes. Science Advances, 5(2), eaau4734. https://doi.org/10.1126/sciadv.aau4734

36

37

EPFL


Self-reflection

- Think of a class (or a situation) where you felt like the outsider.
- What could the teacher/students have done to make you feel like you belonged?

INCLUSIVE CLASSROOMS

38

EPFL Learning students names influences student behaviour and attitudes Student feels that instructors are more likely to provide 6.70% student with letter of recommendation or mentoring Student feels it builds classroom community 14.20% Student feels it builds student-instructor relationships 23.10% Student feels enhanced performance in the course or confidence in the material Student feels more comfortable getting help Student feels more invested in the course 19.40% Student feels more valued 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Cooper, et.al., (2017). What's in a Name? The Importance of Students Perceiving That an Instructor Knows Their Names in a High-Enrollment Biology Classroom. CBE—Life Sciences Education, 16(1), ar8. https://doi.org/10.1187/cbe.16-08-0265

Joelyn de Lima 20

40

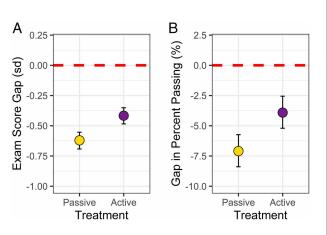
EPFL

Fostering a sense of belonging

- Make place for students personal narratives in your class
- Create opportunities for informal interactions (before class, in the corridors, etc.)
- Give students a voice and agency they are an integral part of the classroom.
- Lots of feedback and thereby communication

INCLUSIVE CLASSRO

Dewsbury, B., & Brame, C. J. (2019)


41

EPFL

Active learning narrows achievement gaps for underrepresented students in undergraduate STEM

 Active learning reduced achievement gaps in examination scores by 33% and narrowed gaps in passing rates by 45%.

 Only classes that implemented high-intensity active learning narrowed achievement gaps

student examination scores:15 studies (9,238 total students) student failure: 26 studies (44,606 total students).

Theobald, et.al., (2020). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. *Proceedings of the National Academy of Sciences*, 117(12), 6476–6483. https://doi.org/10.1073/pnas.1916903117

42

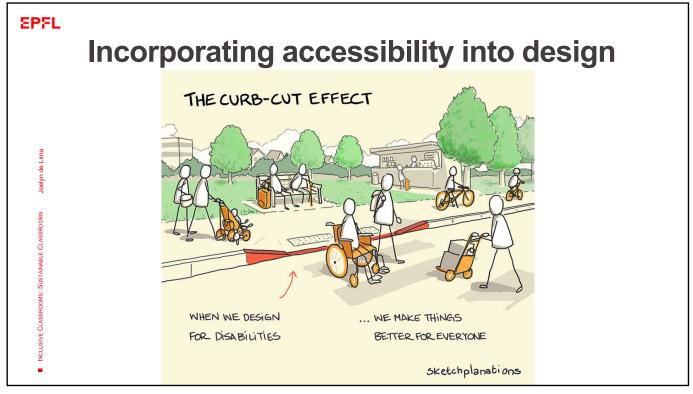
22.02.2024 **Inclusive Classrooms**

EPFL

Strategies to increase inclusiveness

- Based on the Tanner reading discuss some strategies that you could use in your class
- Think of in person and online learning spaces

43


EPFL

Learning from architecture

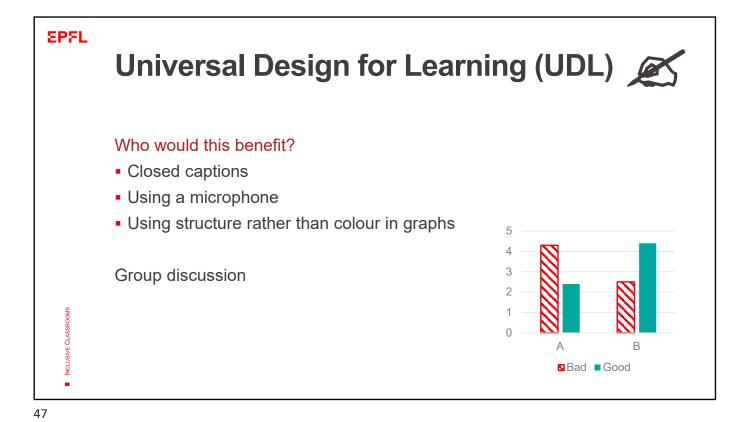
How to make architecture more accessible?

44

45

EPFL

Universal Design for Learning (UDL)


- Grew from ideas about making architecture more accessible
- Not JUST for students with disabilities

Universal design focuses on eliminating barriers through initial designs that consider the needs of diverse people, rather than overcoming barriers later through individual adaptation

LISIVE CLASSROOMS

Rose, et.al. (2006).

46

EPFL

Principles of UDL

- 1. Multiple means of representation
- 2. Multiple means of expression
- 3. Multiple means of engagement

CLASSROOM

Rose, et.al. (2006)

48

EPFL

Multiple Means of Representation

- Students differ in how they access and process information
- Make information accessible!
- Use multiple means of representation

NCLUSIVE CLASSROO

49

EPFL

Multiple Means of Expression

- Students differ in how they demonstrate their knowledge
- Provide alternate means of expression

LUSIVE CLASSROOMS

50

EPFL

Students **expressed different ideas** in written narratives v/s constructed models

When the human Stages started without enlarged heals it soon found what their were stronger Relations. Humans started no adapt to other needs and other Surroundings and togen do duelop thronger were supported teels for other budges.

de Lima, J. (2021). Contextual Influences on Undergraduate Biology Students' Reasoning and Representations of Evolutionary Concepts. Michigan State University.

At EPFL:

Adding 30 minutes to the exam, without changing the wording or number of questions, reduces stress. But, given more time, other students score almost an entire grade point higher.

https://learn.epfl.ch/news_learn/raising-the-first-year-pass-rate-without-compromising-on-standards/

51

EPFL

Multiple Means of Engagement

- Students differ in their comfort with levels and types of engagement
- Students have different motivating factors

Intellectual engagement matters!

USIVE CLASSROOMS

52

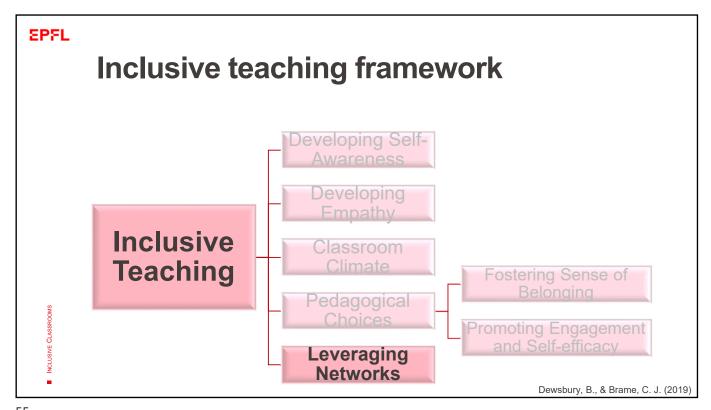
EPFL

How could you modify your lecture using UDL?

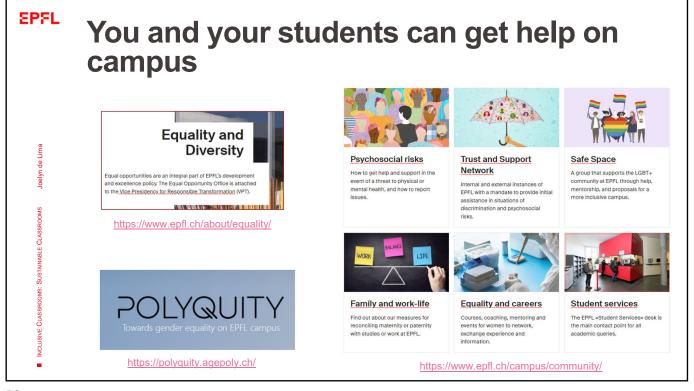
- 1. Multiple means of representation
- 2. Multiple means of expression
- 3. Multiple means of engagement

CLUSIVE CLASSRO

53


EPFL

Good Teaching


Results in increased **learning**

IVE CLASSBOOMS

54

55

56

57

EPFL

EPFL resources

- EPFL Respect training: https://www.epfl.ch/about/respect/respect-training/
- EPFL courses on Implicit Bias Awareness:
 https://www.epfl.ch/campus/community/equality-and-careers/implicit-bias-awareness/
- EPFL resources on inclusive language:
 https://www.epfl.ch/about/equality/inclusive-language/practical-guide/principles/
- EPFL equality and diversity office: https://www.epfl.ch/about/equality/

58

EPFL

- Aeby, P., Fong, R., Vukmirovic, M., Isaac, S., & Tormey, R. (2019). The Impact of Gender on Engineering Students' Group Work Experiences. International Journal of Engineering Education, 35(3), 756–765.
- Canning, E. A., Muenks, K., Green, D. J., & Murphy, M. C. (2019). STEM faculty who believe ability is fixed have I arger racial achievement gaps and inspire less student motivation in their classes. Science Advances, 5(2), eaau4734. https://doi.org/10.1126/sciadv.aau4734
- Cooper, K. M., Haney, B., Krieg, A., & Brownell, S. E. (2017). What's in a Name? The Importance of Students Perceiving That an Instructor Knows Their Names in a High-Enrollment Biology Classroom. CBE—Life Sciences Education, 16(1), ar8. https://doi.org/10.1187/cbe.16-08-0265
- de Lima, J. (2021). Contextual Influences on Undergraduate Biology Students' Reasoning and Representations of Evolutionary Concepts. Michigan State University.
- Dewsbury, B., & Brame, C. J. (2019). Inclusive Teaching. CBE—Life Sciences Education, 18(2), fe2. https://doi.org/10.1187/cbe.19-01-0021
- Freeman, T. M., Anderman, L. H., & Jensen, J. M. (2007). Sense of Belonging in College Freshmen at the Classroom and Campus Levels. The Journal of Experimental Education, 75(3), 203–220. https://doi.org/10.3200/JEXE.75.3.203-220
- Goldin, C., & Rouse, C. (2000). Orchestrating Impartiality: The Impact of "Blind" Auditions on Female Musicians. American Economic Review, 90(4), 715–741. https://doi.org/10.1257/aer.90.4.715
- Grunspan, D. Z., Eddy, S. L., Brownell, S. E., Wiggins, B. L., Crowe, A. J., & Goodreau, S. M. (2016). Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms. PLOS ONE, 11(2), e0148405. https://doi.org/10.1371/journal.pone.0148405
- Hoffman, K. M., Trawalter, S., Axt, J. R., & Oliver, M. N. (2016). Racial bias in pain assessment and treatment recommendations, and false beliefs about biological differences between blacks and whites. Proceedings of the National Academy of Sciences, 113(16), 4296–4301. https://doi.org/10.1073/pnas.1516047113

59

EPFL

- Milkman, K. L., Akinola, M., & Chugh, D. (2012). Temporal Distance and Discrimination: An Audit Study in Academia. Psychological Science, 23(7), 710–717. https://doi.org/10.1177/0956797611434539
- Milkman, K. L., Akinola, M., & Chugh, D. (2015). What happens before? A field experiment exploring how pay and representation differentially shape bias on the pathway into organizations. The Journal of Applied Psychology, 100(6), 1678–1712. https://doi.org/10.1037/apl0000022
- Rose, D. H., Harbour, W. S., Johnston, C. S., Daley, S. G., & Abarbanell, L. (2006). Universal Design for Learning in Postsecondary Education: Reflections on Principles and their Application. Journal of Postsecondary Education and Disability, 19(2).
- Schinske, J. N., Perkins, H., Snyder, A., & Wyer, M. (2016). Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class. CBE—Life Sciences Education, 15(3), ar47. https://doi.org/10.1187/cbe.16-01-0002
- Seymour, E., & Hunter, A.-B. (2019). Talking about Leaving Revisited: Persistence, Relocation, and Loss in Undergraduate STEM Education. Springer Nature.
- Tanner, K., & Allen, D. (2007). Cultural Competence in the College Biology Classroom. CBE—Life Sciences Education, 6(4), 251–258. https://doi.org/10.1187/cbe.07-09-0086
- Theobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., Chambwe, N., Cintrón, D. L., Cooper, J. D., Dunster, G., Grummer, J. A., Hennessey, K., Hsiao, J., Iranon, N., Jones, L., Jordt, H., Keller, M., Lacey, M. E., Littlefield, C. E., ... Freeman, S. (2020). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proceedings of the National Academy of Sciences, 117(12), 6476–6483. https://doi.org/10.1073/pnas.1916903117
- Wenzel, T. J., & College, B. (2002). Controlling the climate in your classroom. Analytical Chemistry, 75, 311A-314A.
- Zumbrunn, S., McKim, C., Buhs, E., & Hawley, L. R. (2014). Support, belonging, motivation, and engagement in the college classroom: A mixed method study. Instructional Science, 42(5), 661–684. https://doi.org/10.1007/s11251-014-9310-0

60

EPFL

Homework

- 1. Prepare your MAXI lesson for Day 5
 - Choose one of your previous lesson to REVISE
 - Audience of "first year engineering students"
 - Use the full LOAFS structure, per Day 5 lesson planning matrix
 - 20 minutes, teaching for 5 people
- 2. Deadlines for feedback flow:
 - 1. Tuesday, 27th Feb, 14:00 Submit your maxi lesson pla
 - 2. Thursday, 29th Feb, 14:00 Submit your reviews for two lesson plans
 - 3. Revise lesson plan based on review
 - 4. Teach on Friday

01